Kernel Locality Preserving Low-Rank Representation

نویسندگان

  • Yu-Qi Pan
  • Ming-Yan Jiang
  • Fei Li
چکیده

Classification based on Low-Rank Representation (LRR) has been a hot-topic in the field of pattern classification. However, LRR may not be able to fuse the local and global information of data completely and fail to represent nonlinear samples. In this paper, we propose a kernel locality preserving low-rank representation with Tikhonov regularization (KLP-LRR) for face recognition. KLP-LRR is a nonlinear extension of LRR, and it introduces the local manifold structures of data sets into LRR methods. Since the feature information in kernel space has a very high dimensionality, and to fit the proposed KLP-LRR method well, we introduce locality preserving factor and Tikhonov regularization into dimensionality reduction. It can get more discriminant coding information, especially in the aspect of combining local features with global features, where it is capable of improving the recognition rate obviously. Explicit experimental results on AR, the extended Yale B, FERET face databases show that KLP-LRR out-performs other comparative methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Locality Preserving Low-Rank Representation with Tikhonov Regularization

Classification based on Low-Rank Representation (LRR) has been a hot-topic in the field of pattern classification. However, LRR may not be able to fuse the local and global information of data completely and fail to represent nonlinear samples. In this paper, we propose a kernel locality preserving low-rank representation with Tikhonov regularization (KLP-LRR) for face recognition. KLP-LRR is a...

متن کامل

Kernel Scatter-difference Based Discriminant Locality Preserving Projection for Image Recognition ?

Locality preserving projection (LPP) aims at finding an embedded subspace that preserves the local structure of data. Though LPP can provide intrinsic compact representation for image data, it has limitations on image recognition. In this paper, an improved algorithm called kernel scatter-difference based discriminant locality preserving projection (KSDLPP) is proposed. KSDLPP uses kernel trick...

متن کامل

An Intelligent Credit Forecasting System Using Supervised Nonlinear Dimensionality Reductions

Kernel classifiers (such as support vector machines) have been successfully applied in numerous areas, and have demonstrated excellent performance. However, due to the high dimensionality and nonlinear distribution of financial input data in credit rating forecasting, finding a suitable low dimensional subspace by nonlinear dimensionality reductions is a key step to improve classifier performan...

متن کامل

Optimizing Kernel Function with Applications to Kernel Principal Analysis and Locality Preserving Projection for Feature Extraction

Kernel learning is a popular research topic in pattern recognition and machine learning. Kernel selection is a crucial problem endured by kernel learning method in the practical applications. Many methods of finding the optimal parameters have been presented, but this kind of methods have no ability of changing the kernel structure, accordingly without changing the data distribution in kernel m...

متن کامل

Visualizing Graphs with Structure Preserving Embedding

Structure Preserving Embedding (SPE) is a method for embedding graphs in lowdimensional Euclidean space such that the embedding preserves the graph’s global topological properties. Specifically, topology is preserved if a connectivity algorithm can recover the original graph from only the coordinates of its nodes after embedding. Given an input graph and an algorithm for linking embedded nodes,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Inf. Sci. Eng.

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2016